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Theory of magnetohydrodynamic and shock waves in neutron matter
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The magnetohydrodynamic equations for a nonconducting magnetically ordered medium are developed.
Using these equations, we investigate magnetic neutron matter as a magnetically ordered nonconducting liquid.
It is shown that in this media small amplitude waves such as modified spin and sound waves and shock waves
may propagate. The differential conservation laws for the densities of additive integrals of motion are con-
structed. On this basis we find the relations between the discontinuities of hydrodynamic quantities for the
shock. The extension of the Hugoniot adiabat for shock waves in magnetic neutron matter is obtained.
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[. INTRODUCTION then we can expressas &= &;(x,t) (x are the Euler coor-

. - dinates. Further, let us consider the displacement vector not
As was previously showfil], a phase transition from nor- as a function of¢ andt but as a function ok andt, u,
mal to magnetically ordered states can take place in densg L

neutron matter. In this matter the propagation of specifi _uiﬁx’t)' Thgs the velocity of a medium particle is defined
magnetohydrodynamic waves of small amplitude, as well a y the equation
the propagation of shock waves, are possible. ax(ED)  au(x.t)
Note that in studying these waves one cannot directly em-  p,(x,t)= ———= ——
ploy the equations of standard magnetohydrodynamics, be-
cause these assume electrical media. However, neutron mat-
ter is nonconductive. Therefore, we have to obtain new gq e have
equations to replace the standard magnetohydrodynamics
equations. aui(x,t)
In this paper we establish magnetohydrodynamic equa- T
tions for a nonconducting medium and investigate the small
and large amplitude waves in magnetic neutron matter. | R
Sec. Il the magnetohydrodynamics of nonconducting medi%zzriﬁg]deggitya#{a{jxl;;?egﬁﬁg;(éhtgdezzy to see that the
is developed, and the corresponding equations are formu-
lated. Section 1l is devoted to an investigation of magneto- ¢,
hydrodynamic waves of small amplitude, and to obtaining p(X,t)=py det—, (2.9
their spectra. The theory of a shock waves for neutron matter X
is developed in Sec. IV. We work in a nonrelativistic frame-
work.

au;(x,t)
(9Xj '

at st Trien

(2.2

:bijvj(X,t), (23)

wherep, is the density of a nondeformed medium.
We immediately obtain, from Eq$2.3) and(2.4),

P
IIl. DYNAMIC EQUATIONS FOR NONCONDUCTING P 1 div pv=0. (2.5
MAGNETICALLY ORDERED MEDIUM at

We derive dynamic equations for a medium where mag- We write the equation of motion of the magnetic moment
netodipole interaction between neutrons plays an importardensity in the form
role. Let us suppose that the medium is described by the M
displacement vectau(x,t), densityp(x,t), density of mag- i _
netic momenM (x,t), and entropy density(x,t). Note that AV Miv=gIM, Hegli. (2.6
the positionx; of a medium particle at the momenis the
function of its initial coordinates;, x,=x;(&,t) (& are the Wwhereg is the gyromagnetic ratio anl; is the effective
Lagrange coordinatgsif we introduce the displacement vec- magnetic field that acts on the magnetic moment of the me-

tor u(é,t), dium.
We write the medium dynamic equation as

Xi(git):§i+ui(§lt)1 (21) ﬂ_'_vi(xyt) ::_XV :f, (27)

Pl ot ,

* Author to whom correspondence should be addressed. Electroniwheref is the force that acts on unit volume of the medium.
address: nlaskin@kipt.kharkov.ua For the entropy density we have an equation
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Jo 1
— +div ov=0. (2.9 WO(M,b,0)=j d3x[§

M M
- - —+w(M?,b,0)

K ax, " ax
The last equation is usually called the adiabaticity equation. _ E M. H] (2.15

As long as we do not take into consideration the dissipa- 2 ' )
tive processes, the effective magnetic fields and forcef
are the functionals ofi, M, and o, and do not depend on where the first term is the exchange energy due to inhomo-
velocity v. Let us clarify the structure of the functionals in geneity of the magnetic moment,is the exchange constant,
terms of the phenomenological energydefined by equa- w(M?2,b,o) is the energy density of the homogeneous state

tion due to short-range forces, and the last term is the energy of
the magnetodipole interaction, which may be rewritten as
W= f d3x2 pu2+Wy(M,u, o), (2.9  follows:
12 ; i inati 3 H? 1 3
wheres pv < is the density of the medium kinetic energy, and d°x 8.- "3 d>x M-H.

the energyW, consists of the energy of short-range interac-
tions and the energy of long-range magnetodipole interac-
tion. Differentiating Eq.(2.9) with respect tot and taking
into account Egs(2.3) and(2.5—(2.8), we obtain

The system of equation®.5—(2.8), (2.11), and (2.12
allows one to describe both the magnetic dielectrics and the
paramagnetic liquids. For liquid the energy density depends

IW SW, a W, a W, on b;; only by means of density of liquig(x,t)=p, detb;
W:f d3x v;| fi+ B, bji+o % S ™M % oM, moreover,a;; = adj;, Ww=w(M?,p,o). Noting that
SW, d detb B
+f d®x oM, o[M,Heg]; - (2.10 bi; Tjk—(detb)&,— ,

Due to the energy conservation law the derivativié/ it let us represent the fordeand the effective magnetic field
must be zero at arbitrary, u, andM. Substitutingv=0 in He @s
Eqg. (2.10, one can easily see thbt,; should be identified

with the quantity— 6W,/6M: (=M o7H_ aP (2.16
H SWo (2.12) | . |
ff: T Tam a .
e o Her=H+ M J fd3 (M2,b,0)
=H+ajj ——— — X W(MZ2,b,o),
Then dW/at will go to zero at arbitrary if of 1oxiox; M @17
(o oW, b a oW M a oW o1
TR L v e I v (212 where
The energyW, is not a functional of the displacement vector _ gw o dw W
u but of [du;(x,t) ]/dx; or the quantityb;; . So we have P=p dap to do M IM; w (218
MWy 9 oW is the liui
0 0 2.13 is the liquid pressure.

SUi(X) Xy bi(X) Equation(2.18 may be obtained from the thermodynam-
_ _ ics consideration also. As is well known, the entrapwand
Equationg2.9—(2.8), (2.11), and(2.12 describe the dynam-  Gibbs potentiak» are related by the equation

ics of a nonconductive magnetic medium. In the case of

small spatial gradients these equations transform into Egs. W o

(15.1.9, (15.1.8, (15.1.9 of Ref.[2]. o=—ot T3t
Let us clarify the term of the magnetodipole interaction in

::Aéon(I:inuSge(zrﬁgt)eai\cvrlrt]ht:]rgsereucrt?icc): Sgnvgerﬁ;tié{;?tﬁg;g Qz:t?s whereT is the temperaturey is the chemical potential, and
the equations 9 f)ﬁ is the effective magnetic field in the spatially homogeneous
q case. Since the Gibbs potentiakatisfies the thermodynami-

curlH=0, divB=0, cal identity

h
T M, (2.19

B=H+47M, N h
do=wd = +pd =+M-d =, (2.20

1B

— — —=curlE. (2.19

c gt the quantitydw can be written as

Then the energyV, may be represented by dw=Tdo—udp—h-dM. (2.2)
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Using the definitionP=—-Tw and Eq.(2.21), we again ob-
tain Eq.(2.18. Equationg2.16—(2.18 describe the dynam-
ics of both magnetically ordered and nonmagnetic neutron

matter. In the limit of the large wave vectols—, when

2 2 poag°sirt o
@=7 90 co@0+ apog?Sintd’

2 _ 4 2 2_ 2 2 _
IIl. MAGNETOHYDRODYNAMIC WAVES A?—4B=wg— 2w wj— wi(apeg’sin’§—cosh)],

IN DENSE NEUTRON MATTER
we have

Let us apply the set of equatiofi2.5—(2.8), (2.11), and ’ P 5. ) s o
(2.12 to an investigation of small amplitude magnetohydro- 0’ =g+ wiapeg’sin’d, o’ =wy+wi cosh.

dy“?‘”.“c Waves. We.suppose that the eq“"'b”“’T‘ state, small The branchw, exactly coincides with the well-known
deviations from which we study, is characterized by the

equilibrium densityp, and spontaneous magnetizatibh, expression for the frequency of the spin wave modified by
9 Ypo por Y ' .. dipole-dipole interaction. In the case of strong magnetization
whereas the equilibrium velocity and the external magneti

2 . .
field equal zeroyy=0 andH=0. Linearizing Eqgs.(2.5- the branchw= s given by

(2.9), (2.11), and(2.12 near this equilibrium state, we come M2
to the dispersion relation wl=A4s -0 k2cos 6.
Po
0*—Aw’+B=0, (3.1

This branch is similar to the standard magnetohydrodynamic
Alfven wave [3] w? = (H%/4mpo)k? cos6, whereH is the

where o
external magnetic field.

A= w2+ w3+ wi(cof 0+ apyg®sitd)>0, (3.2 V. SHOCK WAVES
B=w2(wi+ wicof )+ wiwiapyg?sif6>0. (3.3 We have applied Eqg2.5—(2.8), (2.11), and(2.12) for
an investigation of small amplitude magnetohydrodynamic
Here 6 is the angle between the wave veckoand the mag- waves in neutron matter. These equations allow one to con-
netizationM,, ws=gMgak? is the spin wave frequency, sider the shock waves in neutron matter. To investigate
wo=Kk\dP/dp|; y is the acoustic wave frequency,is the  shocked flows it is convenient to transform E¢&5—(2.8)
unit mass entropyM is the unit mass magnetic momehRtis  into the form of differential conservation laws for the particle
the pressure of the neutron matter, ang=4mp, M2k, densityp, momentum densityv, energy densityv, and an-
From Eq.(3.1) we obtain the frequencies of magnetohydro-gular momentum density. For simplicity we take into ac-

dynamic waves count only magnetodipole interaction, and neglect the ex-
change interaction=0). Then the equations fgs and
, A+ JAZZ4B puv; are given by
wi=—p—. (3.9
’ P po=0 4.1
ot &Xi pLi=Vy, ( . )

It is easy to verify that the following relation results from
the Egs.(3.2), (3.3

apu; J
_+_Hik:01 (42)
A2—4B={w2— wi+ wi(apyg?sirti—cog)}? gt Xk
+ whapyg?sir? 20>0; where the density of moment flodl;, is defined as
therefore,w? >0. Let us analyze the dispersion relati@) I = pvjv+ PSi— 1 ( H;B,— : Hzéik) . 43
in the limit of small and large wave vectoksAt smallk, the 4m 2

term w2~k* can be neglected in the expression #r and
A%2—4B. Then in the case of weak magnetoelastic couplingdif
(wi< w3 or 4wM3/po<dPldp) we have

The equation of adiabaticity of flow is transformed to a
ferential law of energy conservation,

ow  Jd

7t o =0 (4.4

0% = w5+ w0l cof 0, o?=wiapyg®sirt 6. (3.5

The branchw , is seen to be a slightly modified ordinary where the energy density and the density of energy flow
acoustic wave, while»_ in the region of smalk coincides [I, are defined by
with the spin branch modified by dipole-dipole interaction. ,
In the opposite case of strong magnetizatiof> w3, or 1, ) H
4wM§/p0>aP/&p), we have W= pv FWo(M%p,0) + 87’

(4.5)
wz_w2(00520+aﬂ gzsin20)+w2 :Céé I _lovzv +—[E H] —H-Mv.+v (P+W)
! ° % cos'd “Pogzsinzﬁ' kT2 Kl gp bk KTk o
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Taking into account Eq94.2) and (4.3, we can transform
Eqg. (2.6) into the differential conservation law for angular
momentum,

d
— Ji =

01
(9Xk

(4.9

1% 1 M
E [r,pv]+ a i+
whereJ;, is defined by

1
Jik=eisiXsl I+ g Mivy.

As a first step let us consider one-dimensional flow. In
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{b.}=x(t){a.}, (4.12

where{} denotes the difference between physical quantities
in front of and behind the shock. For example,

{aa}:(a;_a;HX:X(t) .
Using Maxwell equations in a form similar to E@t.11),

we find the boundary conditions for electromagnetic fields at
the shock surface

x(t)
{‘EilkEk}:T{Bi}: {eiuHib=0, {B.}=0.

other words, the physical quantities that describe the flow

depend on one coordinate We denote by, (x) the densi-
ties of physical quantities(a,(X)=p(x), p(X)vi(X),
[r,pv]i+(1/g)M;) and by b_,(x) the densities of corre-
sponding flows, which are the functions af,(x) [b(X)
=b(ag(x))]. Then the differential conservation laws, Egs.
(4.2), (4.2, (4.4), and(4.6), may be expressed as

bk
X

a, + 0,

a

or, in the one-dimensional case,

. b,
aa+ WZO (ba(x):baaﬁ(x))r (47)

whereb,=b,,.
To describe the shocked flows we assume that
a,(x)=a_ (x) o(x—x(1))+a, (x) 0(—x+x(t)), (4.9

wherex(t) is thex coordinate of the shock front at the mo-
mentt,

x=0
x<0.

1,
0(x)= 0,

Therefore b, is given by
bo(X)=b (x) 8(x—x(t))+b_ (x) 8(—x+x(t)), (4.9

whereb (x)=b,(a}).

Substituting the Eqs(4.8) and (4.9 into Eq. (4.7), and
taking into account that &dt)8(x—x(t))=—x(t)S(x
—x(t)) we obtain

+
a

b )
X O(x—x(t))+

a

o+
a,+ X

a,+ O(—x+x(t))

+o(x=x()(—=x(t))(a, —a,)+(b, —b,)=0.
(4.10

Thus we find the magnetohydrodynamic equations in front of

shock and behind the shock,

(4.11

and the boundary conditions at the shock surface,

It is easy to rewrite these conditions as

=0,

1 .
E+E[X,B])]t

{H}=0, {Bn}=0, (4.13

wheren denotes the electromagnetic fields component nor-
mal to the shock front, antldenotes the components along
the shock front. Note that=u(t) is the normal component
of the shock velocity. The conditions in the form of Egs.
(4.12 take place for any flownot necessary one dimen-
siona). In a similar way, Egs(4.12 may be written for
some arbitrary shocked flow

{baknk}:u(t){aa}v U(t)zlu(t)|

In the case of a plane shock wave moving with the constant
velocity u, the magnetohydrodynamic equations have the so-
lutions

a) =const, a,=const,
the above constants being related by
ba(a")—b,(a”)=u(a, —a,). (4.14
Equation(4.14) is valid for an arbitrary rest frame. We

consider this equation in the frame where the shock front is
rested,u=0. So we have

{pv-n}=0, {mn}=0,

{Iin}=0, {Jixni}=0,

(4.1

wheren is the unit normal vector of the shock front. Equa-
tion (4.14) is used in the standard hydrodynamics and mag-
netohydrodynamics of shock wavésee, for example, Refs.
[3.4)).

Equations(4.15 must be supplemented by the equations
for the discontinuities of electromagnetic fields,
{Bni =0, ei{H}=0, ej{En}=0. (4.16
Using the definition of densities of flow®.5 and(4.6), let
us rewrite Eqs(4.15 and(4.16 as follows

2 2
[pvn —H~Mvn]=0,

Upn Ut
_+_
2 2

P+wg

+pun
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Hﬁ waves in neutron matter. It differs from the Hugoniot adiabat
P+pv2— P H,M,; =0, fquation of the standard hydrodynamiid$by the additional
erm

1 1
(Pvnvt_ﬂ HtBn]:Ov {UnM}:O- (4.17 71'(\/1_\/2)(Mn1_an)zzﬁ (Vl_VZ)(Hnl_HnZ)z-
(4.19

In its turn, Eq.(4.18 differs from the adiabat equation
[3], because the term (1/#§(V,—V,)(H—H;p)? of the
standard magnetohydrodynamics is replaced, as follows from
Eq. (4.19, by (1/16m)(V1—V2)(Hp—Hp2)?.

It is easy to see that Eq4.18 can be rewritten in the
form of standard Hugoniot adiabat

Here we use the conditiofH2}=0. Taking into account the
first equation from Eqs4.16), the third equation from Egs.
(4.17 may be rewritten a$pv v} =0.

The shock waves are waves where the densisydiscon-
tinuous at the shock front3]. Denoting byj the normal
component of the matter densityt is continuous at the
shock front,j #0) and introducingv=1/p (V is the specific

volumeg we can rewrite Eqs4.17) in the forms P+ P}
(e7—&3)+ 3

(V1—V2)=0,

with the introduction of new variables* andP* instead of
g andP:

jZVz
(P+wg)V+ T_VH. M] =0,

H2

iP+j2V—8—7:—HnMn]=O, g¥=g+2mM2V, P*=P+27M?2

At last we write down the equations for the discontinuities

{vg=0, {VM}=0. of the velocity and the square of the normal component of
magnetic moment:

Excluding j? from these equations, we obtain
(v1—v2)=V(P3 —P})(V1—Vy),

Vi+V, o1t V,+V, {H2

{(P+wp)V}— {P} )2
2 2 87w (v1—vp)
27T(V1_V2)(Mnl_Mn2):—V —V _(PE_PI):O-
Vi+V, T2
5 tHaMp}—{VH-M}=0, The magnetic moment discontinuity may move with an arbi-

trary velocity. The movement of the magnetic moment dis-
where subscripts 1 and 2 denote the values of physical quagentinuity causes the change of magnetic moment of media
tities in front of and behind shock, respectively. Using Eqs.in space-time, which in its turn leads to the radiation of elec-

(4.16, we transform the last equation into the form tromagnetic waves. However, we do not study this problem
in this paper.
P.+P, 5
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