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Theory of magnetohydrodynamic and shock waves in neutron matter

A. I. Akhiezer, N. V. Laskin,* and S. V. Peletminskii
Institute of Physics and Technology, Kharkov 310108, Ukraine

~Received 12 December 1996; revised manuscript received 23 March 1998!

The magnetohydrodynamic equations for a nonconducting magnetically ordered medium are developed.
Using these equations, we investigate magnetic neutron matter as a magnetically ordered nonconducting liquid.
It is shown that in this media small amplitude waves such as modified spin and sound waves and shock waves
may propagate. The differential conservation laws for the densities of additive integrals of motion are con-
structed. On this basis we find the relations between the discontinuities of hydrodynamic quantities for the
shock. The extension of the Hugoniot adiabat for shock waves in magnetic neutron matter is obtained.
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I. INTRODUCTION

As was previously shown@1#, a phase transition from nor
mal to magnetically ordered states can take place in de
neutron matter. In this matter the propagation of spec
magnetohydrodynamic waves of small amplitude, as wel
the propagation of shock waves, are possible.

Note that in studying these waves one cannot directly e
ploy the equations of standard magnetohydrodynamics,
cause these assume electrical media. However, neutron
ter is nonconductive. Therefore, we have to obtain n
equations to replace the standard magnetohydrodyna
equations.

In this paper we establish magnetohydrodynamic eq
tions for a nonconducting medium and investigate the sm
and large amplitude waves in magnetic neutron matter
Sec. II the magnetohydrodynamics of nonconducting me
is developed, and the corresponding equations are for
lated. Section III is devoted to an investigation of magne
hydrodynamic waves of small amplitude, and to obtain
their spectra. The theory of a shock waves for neutron ma
is developed in Sec. IV. We work in a nonrelativistic fram
work.

II. DYNAMIC EQUATIONS FOR NONCONDUCTING
MAGNETICALLY ORDERED MEDIUM

We derive dynamic equations for a medium where m
netodipole interaction between neutrons plays an impor
role. Let us suppose that the medium is described by
displacement vectoru(x,t), densityr(x,t), density of mag-
netic momentM (x,t), and entropy densitys(x,t). Note that
the positionxi of a medium particle at the momentt is the
function of its initial coordinatesj i , xi5xi(j,t) ~j i are the
Lagrange coordinates!. If we introduce the displacement vec
tor u(j,t),

xi~j,t !5j i1ui~j,t !, ~2.1!

*Author to whom correspondence should be addressed. Electr
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PRE 581063-651X/98/58~5!/6512~5!/$15.00
se
c
s

-
e-
at-

ics

a-
ll

In
ia
u-
-

g
er

-
nt
e

then we can expressj as j i5j i(x,t) ~x are the Euler coor-
dinates!. Further, let us consider the displacement vector
as a function ofj and t but as a function ofx and t, ui
5ui(x,t). Thus the velocity of a medium particle is define
by the equation

v i~x,t !5
]xi~j,t !

]t
5

]ui~x,t !

]t
1v j~x,t !

]ui~x,t !

]xj
.

~2.2!

So we have

]ui~x,t !

]t
5bi j v j~x,t !, ~2.3!

where bi j 5d i j 2]ui /]xj[]j i /]xj . It easy to see that the
medium density may be represented as

r~x,t !5r0 det
]j i

]xk
, ~2.4!

wherer0 is the density of a nondeformed medium.
We immediately obtain, from Eqs.~2.3! and ~2.4!,

]r

]t
1div rv50. ~2.5!

We write the equation of motion of the magnetic mome
density in the form

]Mi

]t
1div Miv5g@M ,Heff# i , ~2.6!

whereg is the gyromagnetic ratio andHeff is the effective
magnetic field that acts on the magnetic moment of the m
dium.

We write the medium dynamic equation as

rS ]v

]t
1v i~x,t !

]v

]xi
D5f, ~2.7!

wheref is the force that acts on unit volume of the mediu
For the entropy density we have an equation

ic
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]s

]t
1div sv50. ~2.8!

The last equation is usually called the adiabaticity equat
As long as we do not take into consideration the dissi

tive processes, the effective magnetic fieldHeff and forcef
are the functionals ofu, M , and s, and do not depend on
velocity v. Let us clarify the structure of the functionals
terms of the phenomenological energyW defined by equa-
tion

W5E d3x 1
2 rv21W0~M ,u,s!, ~2.9!

where1
2 rv2 is the density of the medium kinetic energy, a

the energyW0 consists of the energy of short-range intera
tions and the energy of long-range magnetodipole inte
tion. Differentiating Eq.~2.9! with respect tot and taking
into account Eqs.~2.3! and ~2.5!–~2.8!, we obtain

]W

]t
5E d3x v i S f i1

dW0

duj
bji 1s

]

]xi

dW0

ds
1M j

]

]xi

dW0

dM j
D

1E d3x
dW0

dM j
g@M ,Heff# j . ~2.10!

Due to the energy conservation law the derivative]W/]t
must be zero at arbitraryv, u, andM . Substitutingv50 in
Eq. ~2.10!, one can easily see thatHeff should be identified
with the quantity2dW0 /dM :

Heff52
dW0

dM
. ~2.11!

Then]W/]t will go to zero at arbitraryv if

f i5
dW0

duj
bji 2s

]

]xi

dW0

ds
2M j

]

]xi

dW0

dM j
. ~2.12!

The energyW0 is not a functional of the displacement vect
u but of @]ui(x,t)#/]xj or the quantitybi j . So we have

dW0

dui~x!
5

]

]xk

dW0

dbik~x!
. ~2.13!

Equations~2.5!–~2.8!, ~2.11!, and~2.12! describe the dynam
ics of a nonconductive magnetic medium. In the case
small spatial gradients these equations transform into E
~15.1.1!, ~15.1.8!, ~15.1.9! of Ref. @2#.

Let us clarify the term of the magnetodipole interaction
W0 in Eq. ~2.9!. With this purpose we note that for a non
conductive medium the electric and magnetic fields sat
the equations

curlH50, div B50,

B5H14pM ,

2
1

c

]B

]t
5curlE. ~2.14!

Then the energyW0 may be represented by
n.
-

-
c-

f
s.

y

W0~M ,b,s!5E d3xH 1

2
a i j

]M

]xi
•

]M

]xj
1w~M2,b,s!

2
1

2
M•HJ , ~2.15!

where the first term is the exchange energy due to inho
geneity of the magnetic moment,a is the exchange constan
w(M2,b,s) is the energy density of the homogeneous st
due to short-range forces, and the last term is the energ
the magnetodipole interaction, which may be rewritten
follows:

E d3x
H2

8p
52

1

2 E d3x M•H.

The system of equations~2.5!–~2.8!, ~2.11!, and ~2.12!
allows one to describe both the magnetic dielectrics and
paramagnetic liquids. For liquid the energy density depe
on bi j only by means of density of liquidr(x,t)5r0 detb;
moreover,a i j 5ad i j , w5w(M2,r,s). Noting that

bi j

] det b

]bjk
5~det b!d i j ,

let us represent the forcef and the effective magnetic field
Heff as

f i5M•

]H

]xi
2

]P

]xi
, ~2.16!

Heff5H1a i j

]2M

]xi]xj
2

]

]M E d3x w~M2,b,s!,

~2.17!

where

P5r
]w

]r
1s

]w

]s
1Mi

]w

]Mi
2w ~2.18!

is the liquid pressure.
Equation~2.18! may be obtained from the thermodynam

ics consideration also. As is well known, the entropys and
Gibbs potentialv are related by the equation

s52v1
w

T
1

m

T
r1

h

T
•M , ~2.19!

whereT is the temperature,m is the chemical potential, and
h is the effective magnetic field in the spatially homogeneo
case. Since the Gibbs potentialv satisfies the thermodynam
cal identity

dv5wd
1

T
1rd

m

T
1M•d

h

T
, ~2.20!

the quantitydw can be written as

dw5Tds2mdr2h•dM . ~2.21!
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Using the definitionP52Tv and Eq.~2.21!, we again ob-
tain Eq.~2.18!. Equations~2.16!–~2.18! describe the dynam
ics of both magnetically ordered and nonmagnetic neut
matter.

III. MAGNETOHYDRODYNAMIC WAVES
IN DENSE NEUTRON MATTER

Let us apply the set of equations~2.5!–~2.8!, ~2.11!, and
~2.12! to an investigation of small amplitude magnetohyd
dynamic waves. We suppose that the equilibrium state, s
deviations from which we study, is characterized by t
equilibrium densityr0 and spontaneous magnetizationM0 ,
whereas the equilibrium velocity and the external magn
field equal zero,v050 andH50. Linearizing Eqs.~2.5!–
~2.8!, ~2.11!, and~2.12! near this equilibrium state, we com
to the dispersion relation

v42Av21B50, ~3.1!

where

A5vs
21v0

21v1
2~cos2u1ar0g2sin2u!.0, ~3.2!

B5vs
2~v0

21v1
2cos2u!1v1

2v0
2ar0g2sin2u.0. ~3.3!

Hereu is the angle between the wave vectork and the mag-
netization M0 , vs5gM0ak2 is the spin wave frequency
v05kA]P/]ru s̄,M̄ is the acoustic wave frequency,s̄ is the
unit mass entropy,M̄ is the unit mass magnetic moment,P is
the pressure of the neutron matter, andv1

254pr0
21M0

2k2.
From Eq.~3.1! we obtain the frequencies of magnetohydr
dynamic waves

v6
2 5

A6AA224B

2
. ~3.4!

It is easy to verify that the following relation results fro
the Eqs.~3.2!, ~3.3!

A224B5$vs
22v0

21v1
2~ar0g2sin2u2cos2u!%2

1v1
4ar0g2sin2 2u.0;

therefore,v6
2 .0. Let us analyze the dispersion relation~3.4!

in the limit of small and large wave vectorsk. At smallk, the
term vs

2;k4 can be neglected in the expression forA2 and
A224B. Then in the case of weak magnetoelastic coupl
~v1

2!v0
2 or 4pM0

2/r0!]P/]r! we have

v1
2 5v0

21v1
2 cos2 u, v2

2 5v1
2ar0g2 sin2 u. ~3.5!

The branchv1 is seen to be a slightly modified ordinar
acoustic wave, whilev2 in the region of smallk coincides
with the spin branch modified by dipole-dipole interactio
In the opposite case of strong magnetization~v1

2@v0
2, or

4pM0
2/r0@]P/]r!, we have

v1
2 5v1

2~cos2u1ar0g2sin2u!1v0
2 cos2u

cos2u1ar0g2sin2u
,

n

-
all
e

ic

-

g

.

v2
2 5v0

2 r0ag2sin2u

cos2u1ar0g2sin2u
.

In the limit of the large wave vectorsk→`, when

A224B5vs
422vs

2@v0
22v1

2~ar0g2sin2u2cos2u!#,

we have

v1
2 5vs

21v1
2ar0g2sin2u, v2

2 5v0
21v1

2 cos2u.

The branchv1 exactly coincides with the well-known
expression for the frequency of the spin wave modified
dipole-dipole interaction. In the case of strong magnetizat
the branchv2

2 is given by

v2
2 54p

M0
2

r0
k2cosu.

This branch is similar to the standard magnetohydrodyna
Alfven wave @3# v2

2 5(H2/4pr0)k2 cosu, whereH is the
external magnetic field.

IV. SHOCK WAVES

We have applied Eqs.~2.5!–~2.8!, ~2.11!, and ~2.12! for
an investigation of small amplitude magnetohydrodynam
waves in neutron matter. These equations allow one to c
sider the shock waves in neutron matter. To investig
shocked flows it is convenient to transform Eqs.~2.5!–~2.8!
into the form of differential conservation laws for the partic
densityr, momentum densityrv, energy densityw, and an-
gular momentum density. For simplicity we take into a
count only magnetodipole interaction, and neglect the
change interaction (a50). Then the equations forr and
rv i are given by

]r

]t
1

]

]xi
rv i50, ~4.1!

]rv i

]t
1

]

]xk
P ik50, ~4.2!

where the density of moment flowP ik is defined as

P ik5rv ivk1Pd ik2
1

4p S HiBk2
1

2
H2d ikD . ~4.3!

The equation of adiabaticity of flow is transformed to
differential law of energy conservation,

]w

]t
1

]

]xi
P i50, ~4.4!

where the energy densityw and the density of energy flow
Pk are defined by

w5
1

2
rv21w0~M2,r,s!1

H2

8p
,

~4.5!

Pk5 1
2 rv2vk1

c

4p
@E,H#k2H•Mvk1vk~P1w0!.
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Taking into account Eqs.~4.2! and ~4.3!, we can transform
Eq. ~2.6! into the differential conservation law for angula
momentum,

]

]t S @r ,rv#1
1

g
M D

i

1
]

]xk
Jik50, ~4.6!

whereJik is defined by

Jik5« islxsP lk1
1

g
Mivk .

As a first step let us consider one-dimensional flow.
other words, the physical quantities that describe the fl
depend on one coordinatex. We denote byaa(x) the densi-
ties of physical quantities „aa(x)5r(x), r(x)v i(x),
@r ,rv# i1(1/g)M i… and by bak(x) the densities of corre
sponding flows, which are the functions ofaa(x) @bak(x)
5bak„ab(x)…#. Then the differential conservation laws, Eq
~4.1!, ~4.2!, ~4.4!, and~4.6!, may be expressed as

ȧa1
]bak

]xk
50,

or, in the one-dimensional case,

ȧa1
]ba

]x
50 „ba~x!5baab~x!…, ~4.7!

whereba5bax .
To describe the shocked flows we assume that

aa~x!5aa
1~x!u„x2x~ t !…1aa

2~x!u„2x1x~ t !…, ~4.8!

wherex(t) is thex coordinate of the shock front at the mo
ment t,

u~x!5 H1,
0,

x>0
x,0.

Therefore,ba is given by

ba~x!5ba
1~x!u„x2x~ t !…1ba

2~x!u„2x1x~ t !…, ~4.9!

whereba
6(x)5ba(aa

6).
Substituting the Eqs.~4.8! and ~4.9! into Eq. ~4.7!, and

taking into account that (]/]t)u„x2x(t)…52 ẋ(t)d„x
2x(t)… we obtain

S ȧa
11

]ba
1

]x D u„x2x~ t !…1S aa
21

]ba
2

]x D u„2x1x~ t !…

1d„x2x~ t !…„2 ẋ~ t !…~aa
12aa

2!1~ba
12ba

2!50.
~4.10!

Thus we find the magnetohydrodynamic equations in fron
shock and behind the shock,

ȧa
61

]ba
6

]x
50, ~4.11!

and the boundary conditions at the shock surface,
w

.

f

$ba%5 ẋ~ t !$aa%, ~4.12!

where$ % denotes the difference between physical quanti
in front of and behind the shock. For example,

$aa%5~aa
12aa

2!ux5x~ t ! .

Using Maxwell equations in a form similar to Eq.~4.11!,
we find the boundary conditions for electromagnetic fields
the shock surface

$e i1kEk%5
ẋ~ t !

c
$Bi%, $e i1kHk%50, $B1%50.

It is easy to rewrite these conditions as

H S E1
1

c
@ ẋ,B# D J

t

50, $Ht%50, $Bn%50, ~4.13!

wheren denotes the electromagnetic fields component n
mal to the shock front, andt denotes the components alon
the shock front. Note thatẋ5u(t) is the normal componen
of the shock velocity. The conditions in the form of Eq
~4.12! take place for any flow~not necessary one dimen
sional!. In a similar way, Eqs.~4.12! may be written for
some arbitrary shocked flow

$baknk%5u~ t !$aa%, u~ t !5uu~ t !u.

In the case of a plane shock wave moving with the cons
velocity u, the magnetohydrodynamic equations have the
lutions

aa
15const, aa

25const,

the above constants being related by

ba~a1!2ba~a2!5u~aa
12aa

2!. ~4.14!

Equation~4.14! is valid for an arbitrary rest frame. We
consider this equation in the frame where the shock fron
rested,u50. So we have

$rv•n%50, $p iknk%50,
~4.15!

$Pknk%50, $Jiknk%50,

wheren is the unit normal vector of the shock front. Equ
tion ~4.14! is used in the standard hydrodynamics and m
netohydrodynamics of shock waves~see, for example, Refs
@3,4#!.

Equations~4.15! must be supplemented by the equatio
for the discontinuities of electromagnetic fields,

$Bknk%50, « ikl$Hknl%50, « ikl$Eknl%50. ~4.16!

Using the definition of densities of flows~4.5! and ~4.6!, let
us rewrite Eqs.~4.15! and ~4.16! as follows

H rvnS vn
2

2
1

v t
2

2 D 1rvnS P1w0

r D2H•MvnJ 50,



.

ua
qs

oc

at

n

rom

es
of

bi-
is-
dia
c-

em

ch-
der
rch

6516 PRE 58A. I. AKHIEZER, N. V. LASKIN, AND S. V. PELETMINSKII
H P1rvn
22

Hn
2

8p
2HnMnJ 50,

H rvnv t2
1

4p
HtBnJ 50, $vnM%50. ~4.17!

Here we use the condition$Ht
2%50. Taking into account the

first equation from Eqs.~4.16!, the third equation from Eqs
~4.17! may be rewritten as$rvnv t%50.

The shock waves are waves where the densityr is discon-
tinuous at the shock front@3#. Denoting by j the normal
component of the matter density~it is continuous at the
shock front,j Þ0! and introducingV51/r ~V is the specific
volume! we can rewrite Eqs.~4.17! in the forms

H ~P1w0!V1
j 2V2

2
2VH•M J 50,

H P1 j 2V2
Hn

2

8p
2HnMnJ 50,

$v t%50, $VM%50.

Excluding j 2 from these equations, we obtain

$~P1w0!V%2
V11V2

2
$P%1

V11V2

2

$Hn
2%

8p

1
V11V2

2
$HnMn%2$VH•M %50,

where subscripts 1 and 2 denote the values of physical q
tities in front of and behind shock, respectively. Using E
~4.16!, we transform the last equation into the form

~«12«2!1
P11P2

2
~V12V2!1p~V12V2!~Mn12Mn2!2

50, ~4.18!

where«5w0V is the unit mass energy. Equation~4.18! is
the generalization of the Hugoniot adiabat equation for sh
s.
n-
.

k

waves in neutron matter. It differs from the Hugoniot adiab
equation of the standard hydrodynamics@4# by the additional
term

p~V12V2!~Mn12Mn2!25
1

16p
~V12V2!~Hn12Hn2!2.

~4.19!

In its turn, Eq.~4.18! differs from the adiabat equatio
@3#, because the term (1/16p)(V12V2)(Ht12Ht2)2 of the
standard magnetohydrodynamics is replaced, as follows f
Eq. ~4.19!, by (1/16p)(V12V2)(Hn12Hn2)2.

It is easy to see that Eq.~4.18! can be rewritten in the
form of standard Hugoniot adiabat

~«1* 2«2* !1
P1* 1P2*

2
~V12V2!50,

with the introduction of new variables«* andP* instead of
« andP:

«* 5«12pMn
2V, P* 5P12pMn

2.

At last we write down the equations for the discontinuiti
of the velocity and the square of the normal component
magnetic moment:

~v12v2!5A~P2* 2P1* !~V12V2!,

2p~V12V2!~Mn12Mn2!5
~v12v2!2

V12V2
2~P2* 2P1* !50.

The magnetic moment discontinuity may move with an ar
trary velocity. The movement of the magnetic moment d
continuity causes the change of magnetic moment of me
in space-time, which in its turn leads to the radiation of ele
tromagnetic waves. However, we do not study this probl
in this paper.
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